One step further with CAD/CAM

My presentation at the Dental Tribune Study Club Symposium at IDEM Singapore 2014 highlighted some of the advantages and disadvantages of the use of CAD/CAM in dentistry. My goal was to enable clinicians to see how it might become more widely accepted in their daily practice and remove some of their reservations. The next generation of dentists will hopefully come to view traditional methods of manufacturing dental prostheses in the same way as we now view fixed partial dentures as a way to replace missing teeth before implants.

CAD/CAM methods for conventional dental and implant-borne prostheses have gained popularity for a variety of reasons. Despite many advantages in terms of cost and convenience, the uptake of this relatively new technology is slow, hinting at a reluctance to try something new.

Many, if not most, clinicians still choose to have fixed implant-borne multi-unit prostheses fabricated by traditional methods of casting and veneering precious metal alloys. However, the associated high technical and material costs may be prohibitive to the group of patients who need this treatment modality the most. To this end, more cost-effective alloys, including base metal alloys, have been cast and veneered with a variety of tooth-coloured materials with good success. CAD/CAM takes this one step further. In fact, materials such as zirconia, which has revolutionised dental prostheses, would not be in use were it not for CAD/CAM.

There has been much discussion around the problem of achieving passivity of fit, the lack of which, it has been postulated, can contribute to mechanical and biological complications. The multiple steps and materials used in impression taking, casting a working model, producing a wax pattern, casting in metal alloy then veneering in tooth coloured material all lead to a certain degree of misfit.

CAD/CAM can help to address this common problem. The use of digital dentistry is more common than clinicians might think, as the laboratory processes involved have already been widely implemented and dental technicians can take the credit for driving the use of the technology forwards. The next step is to adopt digital technology to replace some of the clinical steps in fabricating a prosthesis, namely the impression stage, which leads to production of a working cast.

These steps can introduce cumulative inaccuracies, as well as consume a variety of materials that are then discarded. In addition, there are time-savings to be made, perhaps not in the initial stages of learning and integrating new technology, but, once familiar with the systems involved, all will benefit from the improved and efficient workflow.

I wish you a pleasant read of this CAD/CAM issue, and I hope you will find various interesting articles in it.

Dr Steven Soo
Dental specialist in prosthodontics at Specialist Dental Group® in Singapore